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Abstract

Herein we describe the ability of the permissive glycosyltransferase (GT) OleD Loki to convert a 

diverse set of > 15 histone deacetylase (HDAC) inhibitors (HDACis) into their corresponding 

hydroxamate glycosyl esters. Representative glycosyl esters were subsequently evaluated in assays 

for cancer cell line cytotoxicity, chemical and enzymatic stability, and axolotl embryo tail 

regeneration. Computational substrate docking models were predictive of enzyme-catalyzed 

turnover and suggest certain HDACis may form unproductive, potentially inhibitory, complexes 

with GTs.

Graphical Abstract

HDAC inhibitor sweetener: Hydroxamate-based HDAC inhibitors (HDACis) were identified as 

glycosyltransferase (OleD Loki) substrates, and corresponding hydroxamate glycosyl ester 

products were evaluated in assays for cancer cell line cytotoxicity, chemical/enzymatic stability, 

and axolotl (salamander) embryo tail regeneration. Computational docking models suggest certain 

HDACis to form unproductive, potentially inhibitory, complexes with glycosyltransferases.
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Sugar nucleotide-dependent glycosyltransferases (Leloir GTs)[1] catalyze the regio/

stereospecific transfer of sugars from activated sugar-nucleotide donors to hydroxy groups,
[2] amines,[3] thiols,[4] and activated carbon nucleophiles.[5] GTs are prevalent in nature and 

contribute to diverse cellular functions including, but not limited to, cellular signaling, 

molecular recognition, energy/metabolite storage, and drug resistance/detoxification. These 

proficient biocatalysts have also been used for glycoside synthesis as exemplified by 

applications of the permissive microbial detoxifying GTs YjiC[6] and OleD.[7] Within this 

context, OleD acceptor and sugar nucleotide donor permissivity has been further enhanced 

via directed evolution and structure-based approaches.[7g,j,k] An OleD-based 

transglycosylation strategy has also been developed[7f,i] that exploits GT-catalyzed reaction 

reversibility, and the ability of enhanced OleD mutants (OleD ASP, TDP16 and Loki)
[7a–f,i–k] to efficiently use simple colorimetric or fluorescent substrates. This 

transglycosylation platform also enabled a plate-based screen to identify new OleD 

substrates and improved OleD-catalyzed syntheses via shifting the reaction equilibria toward 

desired glycoside product.[7a–f]

One such recent transglycosylation screen identified the histone deacetylase inhibitor 

(HDACi) trichostatin A as a new OleD Loki substrate and subsequently demonstrated the 

efficient OleD-catalyzed synthesis of the corresponding glucopyranosyl hydroxamate 

trichostatin C (the only naturally occurring hydroxamate glycoside isolated to date, 

produced by Streptomyces platensis No. 145 and Streptomyces strain Y-50).[7a,8] Although 

HDACis have broad clinical utility, their corresponding glycosides have not been extensively 

studied. To further probe the synthetic utility of OleD, herein we describe the evaluation of 

21 structurally diverse hydroxamate-based HDACis as potential OleD substrates. This study 

revealed OleD Loki to turnover 17 of the hydroxamates tested to their corresponding 

hydroxamate glycosyl esters. Subsequent bioactivity studies revealed hydroxamate 
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glucosylation to decrease cytotoxicity by 20- to > 3000-fold. The corresponding 

hydroxamates were also found to be resistant to glycosidase-catalyzed hydrolysis and afford 

moderate acid and base stability. Cumulatively, this study advances a new OleD catalytic 

function and the first fundamental stability and bioactivity studies for hydroxamate 

glycosides.

Using 2-chloro-4-nitrophenyl β-D-glucoside (ClNP β-D-Glc) and the OleD variant Loki,[7a–e] 

21 representative hydroxamate-based HDACis were evaluated as putative substrates via a 

simple colorimetric transglycosylation screen under the control of a catalytic amount of 

UDP (Figure 1 A). Assays (1 mM hydroxamate, 2 mM ClNP β-D-Glc, 0.1 mM UDP, 25 mM 

Tris pH 8.0, 5 mM MgCl2, 0.25 μM OleD Loki, 30 μL total volume, 30°C, 1 h, A410) were 

conducted in triplicate in 384 well plates. Each plate also contained a positive (4-

methylumbeliferone; 4-MeUmb)[7a–g,i–k] and negative (DMSO) control. Seventeen 

preliminary primary hits were identified (ΔA410 > 3 standard deviations above the negative 

control) in this first-pass screen (Figure 1 B). Crude reactions identified as preliminary 

primary hits were subsequently analyzed by LC–MS. For all 17 primary hits, the observation 

of a single major glucoside product by LC–MS served as key validation of the colorimetric 

screen (Figure S1 and Table S1 in the Supporting Information). Representatives 1–5 (Figure 

2) were subsequently selected as models for scale-up and structure elucidation based on 

turnover and commercial availability.

Scale-up reactions were each accomplished in a total volume of 30 mL (1 mM 1–5, 20 mM 

Tris·HCl, pH 8.0, 5 mM MgCl2, 2 mM CINP-β-D-glucose, 0.1 mM UDP, 1 μM OleD Loki, 30 

°C, 12–24 h) with reaction progress monitored via ΔA410. Upon completion of the reaction, 

products and residual reactants were captured by solid phase extraction and the resulting 

mixture purified by semipreparative reversed-phase HPLC (Supporting Information Method 

B). Glycoside products were collected and subjected to HR-ESI-MS to establish the 

molecular formula for compounds 1a–5a (Figure 3) as 1a, C27H33N3O10 [m/z 560.2240 (M 
+ H)+]; 2 a, C28H35N3O8 [m/z 542.2489 (M + H)+]; 3a, C30H37N3O9 [m/z 584.2601 (M + 

H)+]; 4a, C27H33N3O7 [m/z 512.2392 (M + H)+]; and 5a, C26H31N3O7 [m/z 498.2237 (M + 

H)+], respectively (Table S1). Comparison of the 1a–5a 1D and 2D NMR to that of the 

corresponding parental hydroxamates (1–5; (Figures S6–S50) revealed 1a–5a signatures 

consistent atypical glucosides and a lack of the 1–5 hydroxamate hydroxy 1H NMR 

resonance (δH = 8.5). Evidence of a 1 a–5 a β-O-glucoside derived from the key anomeric 
1H (near δH = 4.5, J=6.6–8 Hz) and 13C (δC = 102–106) resonances (Tables S2–S6, Figure 

S4) typical of β-O-glucosides.[9] As comparators, typical anomeric carbon 13C resonances 

for C- and N-glycosides range from δC = 70–85[10] and 85–95,[7a,11] respectively. It is also 

important to note that 1 and 3–5 contain only a single accessible nucleophilic OH (that of 

the hydroxamate). Consistent with a glycosidic bond comprised of two heteroatoms,[12] 

HMBC correlations between the sugar and aglycone structure were not observed for 1 a–5 a. 

Cumulatively, these data provide strong support for the proposed structures and are also 

consistent with the previously characterized naturally occurring hydroxamate glycoside 

trichostatin C.[7a,8]

The original trichostatin C structure elucidation studies revealed susceptibility of the 

naturally occurring hydroxamate glucoside to strong acid (3 N HCl or 40% methanolic HCl).
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[8b] However, to the best of our knowledge, the lability of hydroxamate glycosides has not 

been extensively studied. Thus, model hydroxamate glucosides 3 a and 4 a were further 

evaluated for pH stability and susceptibility to glucosidase-catalyzed hydrolysis. In this 

analysis, glucosides 3 a, 4 a and commercially available control 4-methylumbelliferyl-

glucopyranosides were stable at pH 5, 7.5 and 10 (≤ 2% degradation over 30 days, room 

temperature; Figure S2). Consistent with the prior trichostatin C precedent, all glucosides 

were unstable to concentrated H2SO4 (≈50% glucoside hydrolysis within 5 min based on 

thin layer chromatography, data not shown). This limited study suggested similar pH 

liabilities among hydroxamate and umbelliferone glucosides. Hydroxamate glucosides 3 a 
and 4 a were also resistant to α- and β-glucosidase-catalyzed hydrolysis while 

corresponding controls 4-methylumbelliferyl α-D-glucopyranoside and 4-methylumbelliferyl 

β-D-glucopyranoside were rapidly hydrolyzed by α- or β-glucosidase, respectively (Figure 

S3). As glucosidases are typically permissive to substantial aglycon structural diversity,[13] 

this result may suggest unique electronic and/or steric features contribute to the glycosidase 

resistance of hydroxamate glycosides.

HDACs catalyze histone lysine deacetylation and function as critical cellular epigenetic 

modifiers.[14] The agents illustrated in Figure 2 are prototypical HDACis and include three 

clinically approved anticancer drugs (belinostat, panobinostat and vorinostat). Hydroxamates 

function as reversible inhibitors by chelating the key HDAC active-site Zn2+ and display 

potent cancer cell line antiproliferative activities. Yet, while trichostatin A and its 

hydroxamate glycoside trichostatin C were both reported to increase histone H4 acetylation 

in B cells and induce erythroleukemia differentiation,[15] the impact of hydroxamate 

glycosylation on biological activity has not been extensively studied. To address this, 

compounds 1a–5a and their parental hydroxamates 1–5 were evaluated in standard cancer 

cell line cytotoxicity assays against both human colorectal (HCT116) and non-small-cell 

lung (A549) cancer cell lines (Figure 4). Similar to the previously observed decrease in 

potency invoked via trichostatin A glycosylation, glucosylation of 1–5 led to a 20- to > 

3000-fold decrease in potency. Glucoside potency trends mirrored that of the parental 

HDACis with the glucoside of the pan-HDACi panobinostat (4 A549 IC50 0.8 nM; HCT116 

IC50 1.8 nM) identified as the most cytotoxic hydroxamate glycosyl ester (4a A549 IC50 > 

1.0 μM; HCT116 IC50 > 1.9 μM).

Using a Mexican axolotl (Ambystoma mexicanum) embryo tail regeneration (ETR) assay,
[16] HDACis have also been identified as potent inhibitors of tail regeneration. Additional 

subsequent HDACi-based chemical genetic and microarray studies highlighted the 

importance of HDAC activity at the time of tail amputation to regulate the initial 

transcriptional response to injury and regeneration in the axolotl model.[16e] To investigate 

the impact of hydroxamate glycosyl esters within this context, compounds 1a–5a and their 

parental hydroxamates 1–5 were evaluated in the ETR assay.[15] Tail-amputated embryos 

were incubated in microtiter plates in the absence (vehicle control, DMSO) or presence of 

10 μM test agent (1–5, 1a–5a) and imaged on day 1 (pre-treatment) and day 7. Consistent 

with the prior study, parental hydroxamates inhibited tail regeneration (Figure S5). In 

contrast, hydroxamate glycosides were inactive at the concentration tested, potentially due to 

reduced potency (consistent with Figure 4) and/or in vivo exposure.
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Computational substrate docking models (Figure 5) are also consistent with empirically 

determined turnover (or lack thereof). Specifically, these models highlight that the 

representative models for high (abexinostat, Figure 5 A), moderate (tepoxalin, Figure 5 B), 

and low (MC1568, Figure 5 C) OleD turnover all orient the hydroxamate within close 

proximity to the key OleD catalytic H19-D110 acid-base pair. Conversely, the predicted high 

affinity binding mode of a ligand that lacked turnover with OleD (tubacin) revealed a 

catalytically unproductive conformation (Figure 5D). This computational model may 

implicate tubacin and/or related pharmacophores as a potential new starting point for GT 

inhibitor discovery.

In summary, this study expands on the prior discovery of trichostatin A as an OleD Loki 

substrate.[7a] Consistent with the prior comparison of the catalytic competencies for 

trichostatin A (kcat/KM = 1.4×104 μm−1s−1) to the parental OleD Loki acceptor 4-

methylumbelliferone (kcat/KM = 2.2×104 μm−1 s−1), the current study highlights OleD Loki 

as an efficient and permissive biocatalyst for HDACi glucosylation as a basis for exploring 

glycoconjugate tumor targeting and/or prodrug strategies.[17] Hydroxamate glycosylation is 

also expected to circumvent the Lossen rearrangement to a highly reactive isocyanate, a 

reaction known to contribute to nonspecific alkylation and corresponding off-target toxicity 

observed by HDACis.[14f] Most hydroxamates also suffer from rapid metabolism and 

clearance, where UDP-glucuronosyltransferase (UGT)-catalyzed hydroxamate 

glucuronidation plays a major role.[18] Within this context, the OleD Loki platform may also 

serve as a potential screen to facilitate the discovery of hydroxamate analogues less 

susceptible to enzymatic glycosylation. These cumulative factors suggest OleD Loki may 

add to the repertoire of medicinal chemistry tools to advance HDACis for cancer,[19] 

immunotherapy,[20] neurological disorders,[21] and/or infectious disease.[22]

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Schematic of the colorimetric screen. B) Reaction progress as monitored via ΔA410 using 

the standard assay format (see panel A; 1 mM hydroxamate, 2 mM CINP β-D-Glc, 0.1 mM 

UDP, 25 mM Tris pH 8.0, 5 mM MgCl2, 0.25 μM OleD Loki, 30 μL total volume, 30 °C, 1 h). 

Vehicle alone (no acceptor) served as the negative control and a well-characterized OleD 

substrate (4-MeUmb) as the positive control. Assays were conducted in triplicate. GT, OleD 

Loki; ClNP β-D-Glc, 2-chloro-4-nitrophenol β-D-glucose; UDP, uridine diphosphate. The 
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bars in red represent the compounds selected for scale-up and characterization. 

Hydroxamate structures are illustrated in Figure 2.
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Figure 2. 
HDACis tested as putative OleD Loki substrates. Compounds in black were identified as hits 

in the colorimetric screen and subsequently confirmed by LC–MS. Percent conversion (in 

parentheses) was determined via HPLC peak integration. Compounds in grey lacked 

turnover.
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Figure 3. 
Representative hydroxamate glycosyl ethers selected for scale-up and further study.
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Figure 4. 
Comparative cytotoxicity of representative hydroxamates and hydroxamate glycosyl ethers 

toward A) human colorectal (HTC116) and B) non-small cell lung (A549 cells) cancer cell 

lines.
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Figure 5. 
The predicted binding OleD binding models for A) abexinostat (high turnover, Figures 1 and 

2, 1), B) tepoxalin (moderate turnover, Figures 1 and 2), C) MC1568 (low turnover, Figures 

1 and 2) and D) tubacin (no turnover, Figures 1 and 2) based on the wild-type OleD-

erythromycin ligand-bound crystal structure (PDB ID: 2IYF). Yellow dashed lines reflect 

putative key binding/catalytic contacts (distances in Å), including that of the ligand 

hydroxamate with the putative OleD active site base (His19 side chain of the active-site 

H19–D110 acid–base pair).
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